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Abstract

The steady filmwise condensation outside a finite-size horizontal plate covered with a thick porous medium layer is investigate
ically by boundary layer approximations and Brinkman model. The fourth-order Runge–Kutta scheme and shooting method are
to solve numerically the nonlinear ordinary differential equation. The results are presented in terms of the dimensionless avera
numberNu and the dimensionless condensate thicknessδ∗

L
. It is shown from the results presented that the Nusselt number increase

increasing suction parameter and it is also the function of various parameters, such as Darcy number,Da, Jacob number,Ja, Prandtl number
Pr, modified Rayleigh number for a porous medium,Ra, and permeability parameter,λ0. It is also shown that the boundary effect plays
important role for the condensation heat transfer rate in a porous medium.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The problem of laminar condensation on a vertical
nearly vertical wall has been subject to Nusselt’s [1] fo
major assumptions and predicted the heat transfer
The laminar condensation problem has been studied
Rohsenow [2], Sparrow and Gregg [3], Chen [4], and De
and Mills [5], etc. since 1916. Koh et al. [6,7] found th
the effects of interfacial shear stress on heat transfer w
small or negligible, but Nusselt numbers reduction occur
in the range of liquid-metal Prandtl numbers. Churchill
obtained the closed form results to the effects of the ine
and the heat capacity of the condensate, the drag of th
por and the curvature. Méndez and Treviño [9] extensiv
considered the effects of both longitudinal and transve
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heat conduction for a vertical flat wall, and they obtained
asymptotic and numerical solutions for the temperature
condensate film thickness profiles. Cheng [10] explored
problem of a laminar filmwise condensation along a we
or a cone embedded in a porous medium by using D
model.

Jain and Bankoff [11] solved the problem of condensa
along a vertical wall with constant suction velocity, and th
obtained an exact solution by using a double power pertu
tion method. Frankel and Bankoff [12] looked into the co
densation on horizontal tubes in a porous medium prob
Yang [13] solved governing equations by a series expan
method and the results importantly involved sub-cooling
rameter, Prandtl number, and suction velocity parameter
et al. [14] supplied a similarity solution of film condensati
in a porous medium with an appropriate distribution of l
eral mass flux on a body surface of arbitrary shape. Ebin
and Liu [15] considered the Liu’s special case in which
wall temperature varies with distance along the symm
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Nomenclature

C the Ergun constant
Cp specific heat at constant pressure . . J·kg−1·K−1

Da Darcy number defined in Eq. (20)
g acceleration of gravity . . . . . . . . . . . . . . m·sec−2

h convection heat transfer
coefficient . . . . . . . . . . . . . . . . . . . . . W·m−2·K−1

hx local convection heat transfer
coefficient . . . . . . . . . . . . . . . . . . . . . W·m−2·K−1

hfg latent heat of condensation . . . . . . . . . . . . J·kg−1

Ja Jacob number defined in Eq. (20)
keff effective thermal conductivity . . . . . . W·m−1·K
K intrinsic permeability of a porous medium . m2

L0 half length of a finite-size horizontal flat
plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

ṁ condensate mass flux defined in Eq. (15) kg·s−1

Nu Nusselt number defined in Eq. (31)
P pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number defined in Eq. (20)
� defined in Eq. (12)
Ra modified Rayleigh number defined in Eq. (20)
Rew Reynolds number at surface defined in Eq. (20)
Sw suction parameter at surface defined in Eq. (20)
T temperature of condensate . . . . . . . . . . . . . . . . . K
�T saturation temperature minus surface

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
u velocity of condensate inx-direction . . . m·s−1

v velocity of condensate iny-direction . . . m·s−1

vw suction velocity on the plate surface . . . . m·s−1

x axial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . m
y transverse coordinate . . . . . . . . . . . . . . . . . . . . . m

Greek letters

αa apparent thermal diffusivity of a porous
medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2·s−1

δL local condensate thickness . . . . . . . . . . . . . . . . m
φ porosity of a porous medium
η dimensionless condensate thickness defined

by δL/L0
Θ parameter defined as,= hfg + Cp�T/2 J·kg−1

λ parameter defined as,= √
ε/K . . . . . . . . . . m−1

λ0 permeability parameter defined as,= (ε/Da)1/2

µeff effective viscosity of condensate in a porous
medium . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−1

ρ density of condensate . . . . . . . . . . . . . . . . kg·m−3

ζ1 dimensionless condensate thickness, i.e.,ζ1 = η

ζ2 gradient of dimensionless condensate thicknes
i.e.,ζ2 = η′

�δ∗
L variation percent of average film thickness

defined in Eq. (32)
�Nu variation percent of average Nusselt number

defined in Eq. (30)

Superscripts

∗ indicates dimensionless quantity
� indicates average quantity

Subscripts

0 quantity at central point of flat plane surface
a apparent quantity
c critical quantity or quantity at the flat surface

edge
eff effective properties
L quantity associated with the condensate
sat saturated properties
w finite-size horizontal flat plane surface
x local properties
of
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ric body. Pop and Ingham [16] investigated the problem
flow past a sphere embedded in a porous medium base
the Brinkman model and presented a closed form solu
Based on the Darcy–Brinkman–Forchheimer model (D
model), Al-Nimr and Alkam [17] investigated the film con
densation with and without the microscopic inertia effect
a vertical plate in a porous medium. Thus, they obtai
two kind of closed-form results. Char et al. [18] studied
problem of mixed convection condensate along a cond
ing vertical plate in a porous medium by using the D
model and found the local heat transfer rate increased
a decrease in the Jacob number, the Peclet number, an
inertial parameter. It should be mentioned here the one
flow.

A treatment of condensation problem for horizontal
surface has been presented by Popov [19]. Condensatio
der side or upper side of a horizontal or inclined surf
has been investigated by several authors. Yang and C
n

e

-

[20] used the concept of hydraulics of open channel flow
search the boundary condition at the edge of the plate. Y
et al. [21] considered the condensation on a finite-size h
zontal wavy disk and on a plate facing upward based on
Bakhmeteff’s [22] assumption used by, which is the mi
mum mechanical energy with respect to the boundary la
thickness at the edge of the plate. Based on the Darcy m
(DM), Wang et al. [23] recently discussed the problem
boundary layer condensation along horizontal flat plane
bedded in a porous medium and they got exact solutions

The present paper studies the suction effect on the l
nar film condensation on a finite-size horizontal permea
flat plate embedded in a porous medium. The objective
consider both the Brinkman and Darcy model equation
motion for the condensate flow in the boundary layer and
amine the significance of each model. The effects of sev
key parameters on the average Nusselt number and di
sionless film thickness have been examined.
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2. Mathematical model

The two-dimensional laminar condensation on a horiz
tal permeable flat plate embedded in a porous mediu
considered as shown in Fig. 1. The surface temperaturTw

of the plate is uniform and the temperature of saturated v
in a porous medium corresponds to the saturated temper
Tsat. It is assumed that porous medium is an isotropic m
rial. It is also assumed that the flow of condensate depe
on the variation in hydrostatic pressure. The porous med
layer is saturated with the condensate. We consider Sto
flow for condensate in a porous medium layer. The m
mentum boundary layer is furthermore subject to a unifo
suction, which removes the condensate at a constant su
velocity. Then, the condensate flows past the finite sur
under the influence of gravity. In order to study the probl
of film condensation about a horizontal flat plane with hom
geneous porous medium layer, the Brinkman model (B
and Darcy model (DM) are applied to both the dry vap
and liquid phases in a porous medium. Attention will be
stricted to steady-state flows in this analysis and multiph
flows will not be intended.

The continuity equation for condensate forced fl
through a porous medium is, if density variations are n
ligible:

∂uL/∂x + ∂vL/∂y = 0 (1)

where the subscriptL denotes the quantity associated w
the condensate;uL andvL are the velocity components in th
x- andy-directions, respectively. The governing moment
equation for the condensate withiny � δL under the bound
ary layer simplifications is given as for BM:

∂2uL/∂y2 = φuL/K + φ(∂P/∂x)/µeff (2a)

Eq. (2a) represents the Brinkman extension of Darcy mo
which is considered by neglecting buoyancy force wh
the first term on the left-hand side of the Eq. (2a) is
Brinkman term, which accounts for the presence of a s
boundary effect. In Eq. (2a),φ is a porosity of a porou
medium,K is a permeability of a porous medium,P is the
local pressure,µeff is the effective dynamic viscosity of th

Fig. 1. Physical model and coordinate system.
e

n

condensate in a porous medium. If the permeability of
porous medium is very high, it may be impossible to neg
the viscous forces in setting up the momentum equat
Based on the Darcy model (DM), it must be noted that
effects of viscosity are being ignored, we have:

uL = K(−∂P/∂x)/µL (2b)

whereµL is the dynamic viscosity of the condensate.
addition, the equation of momentum aty-direction will be
given by:

0= −∂P/∂y − ρLg (3)

if the buoyancy forces are considered. The energy equa
will assume that the condensate and the particulate ma
are in thermodynamic equilibrium, so that it is given by:

uL

∂TL

∂x
+ vL

∂TL

∂y
= αa

∂2TL

∂y2
(4)

In Eqs. (3) and (4),g is the gravitational acceleration,ρL is
the density of condensate,αa is the apparent thermal diffu
sivity of the condensate in a porous medium. If the por
particles are spherical, the permeability of a porous med
K is based on the expression determined experimentall
Ergun [24]:

K = φ3d2
p

CE(1− φ)2

where thedp is a mean diameter of solid particle and t
symbolCE is the Ergun constant depending on the matrix
a porous medium. Furthermore, it is assumed that the ef
of non-condensable gas, shear stress at the interface be
the condensate and the pure vapor, surface–tension–d
convection in the porous–fluid system, and capillary suc
in a porous layer can be neglected. Eqs. (1)–(4) are subje
to the boundary conditions presented as follows:

at the plate surface (y = 0)

TL = Tw, vL = −vw

(uL = 0, only for BM) (5)

at the vapor–liquid interface (y = δL(x))

TL = Tsat, P = Psat, ∂uL/∂y = 0 (6)

whereTw is the temperature of flat surface, which is co
stant;Tsat is the saturated temperature of a vapor;Psat is the
saturated pressure corresponding to the saturated tem
tureTsat; δL(x) is the local condensate thickness which is
be determined.

Integrating Eq. (3) and imposing the boundary condit
given by Eq. (6), we can obtain the static pressure term
follow:

P = Psat+ ρLg(δL − y) (7)

Solving for uL and substituting Eq. (7) into Eqs. (2a) a
(2b), and integrating Eqs. (2a) and (2b) subject to appro
ate boundary conditions given by Eqs. (5) and (6), gives
x-directional velocity profiles:
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uL = −ρLgK

µeff

{
1− Cosh[λ(δL − y)]

Cosh(λδL)

}
δ′
L for BM (8a)

uL = −(ρLgK/µL)δ′
L for DM (8b)

where λ = √
φ/K is a constant for a specified poro

medium layer, and prime denotes differentiation with resp
to x, i.e. δ′

L = dδL/dx, δ′′
L = d2δL/dx2. Using the above re

sults, Eqs. (8a) and (8b), and the boundary condition g
by Eq. (5) and integrating Eq. (1), we can obtain the velo
profiles in they-direction as:

vL =
(

ρLgK

λµeff

){
δ′′
L

[
Sinh(λy)

+ (
1− Cosh(λy)

) · Tanh(λδL) − λ · y]
− 2λδ′2

L · Sech2(λδL) · Sinh2(λy/2)
} − vw

for BM (9a)

vL = (ρLgKδ′′
L/µL)y − vw for DM (9b)

Both the first law of thermodynamics and mass conse
tion equation are considered to be coupled in the gover
equations. Hence, the steady balance of thermal ener
both condensate in a porous medium and plate surface
suction effect accomplished by the following equation [2

ka

∂TL

∂y

∣∣∣∣
y=0

= ρLvw(hfg + Cp�T )

+ d

dx

[ δL(x)∫
0

ρLuL

[
hfg + Cp(Ts − TL)

]
dy

]

(10)

where Cp is the specific heat at constant pressure of
condensate fluid,hfg is a latent heat of condensate,�T is
the reference temperature difference between the satur
temperature of vapor in a porous layer and plate surface
perature. The apparent thermal conductivity,ka , that occurs
in Eq. (10) is a result of conduction in the porous medi
matrix and in the fluid including the effect of thermal disp
sion, and has to be usually measured experimentally.
erwise, the quantity of apparent thermal diffusivity,αa , that
occurs in the energy equation (4) is equal to(ka/ρLCp). It
is assumed that the suction velocityvw is constant along th
horizontal plate. Because the condensate thicknessδL(x) is
relatively small compared to the half-lengthL0 of the plate,
the convective term is then ignored from the energy eq
tion (4). The laminar temperature profile implies that

TL = y�T/δL(x) + Tw (11)

Substituting Eqs. (11), (8a) and (8b) into Eq. (10), one ge

δL

d

dx

[
δLδ′

L(1− �)
]

= −kaµeff�T

ρ2
LKg(hfg + CP �T/2)

+ vwµeff(hfg + CP �T )δL

ρLKg(hfg + CP �T/2)

for BM (12a)
t

n
-

where

� = (hfg + CP �T )Tanh(λδL)

λδL(hfg + CP �T/2)
+ CP �T [Sech(λδL) − 1]

λ2δ2
L(hfg + CP �T/2)

δL

d

dx
(δLδ′

L) = −kaµL�T

ρ2
LKg(hfg + CP �T/2)

+ vwµL(hfg + CP �T )δL

ρLKg(hfg + CP �T/2)
for DM (12b)

The corresponding boundary condition is expressed as

δ′
L = 0 atx = 0 (13)

In fact, we cannot solve Eqs. (12a) and (12b) with th
boundary condition (13) yet. In accordance with a minim
mechanical energy principle, presented by Bakhmeteff
about the concept of hydraulics of open channel flow,
need to find a new boundary condition to solve Eqs. (1
and (12b). Referring to Bakhmeteff’s theory, the relat
equation can be defined as:

∂

∂δc

( δL(x)∫
0

(
u2

L

2
+ gy + P

ρL

)
ρLuL dy

)∣∣∣∣
ṁ=ṁc

= 0 (14)

whereδc is a condensate thickness at the edge of plate
it is still unknown, andṁc is the critical value of mass flow
rate out of the plate edge. Supposing that the velocityuL

given by Eqs. (8a) and (8b) is very larger the velocityvL

expressed by Eqs. (9a) and (9b), the local condensate
flow rate should be expressed as:

ṁx =
δL(x)∫
0

ρLuL dy (15)

By substituting Eqs. (8a) and (8b) into Eq. (15), we can e
ily obtain the following equations:

ṁx = −[
ρ2

LgK/λµeff
](

λδL − Tanh(λδL)
)
δ′
L

for BM (16a)

ṁx = −[
ρ2

LgK/µL

]
δLδ′

L for DM (16b)

The critical values of mass flow ratėmc atx = L0, are given
by:

ṁc = [
ρ2

LgK/λµeff
][

λδc − Tanh(λδc)
]
δ′
L

∣∣
x=L0

for BM (17a)

ṁc = −[
ρ2

LgK/µL

]
δcδ

′
L

∣∣
x=L0

for DM (17b)

It is assumed that it is not to necessary for the edge th
nessδc to become zero at any specified conditions. Refer
to Eq. (14) subject to boundary conditions (13), (17a)
(17b), we can obtain the following relation:

ṁ2
c = 4gρ2

L

λ3Sinh(λδc)

{[
λδcCosh(λδc) − Sinh(λδc)

]4

× [
λδc

[
6λδcCosh(λδc) + Sinh(3λδc)

]
− 9Cosh(λδc)Sinh2(λδc)

]−1} for BM (18a)

ṁ2
c = ρ2

Lgδ3
c for DM (18b)
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Combining Eqs. (17a) and (18a) yields the new bound
condition for BM:

δ′
L

∣∣
x=L0

= 2µeffCosh(λδc)
[
Sinh(λδc) − λδcCosh(λδc)

]
× [

(λg)1/2ρLK
{
λδcSinh(λδc)Sinh(3λδc)

+ 3Cosh(λδc)Sinh(λδc)
[
2λδc − 3Sinh2(λδc)

]}1/2]−1

for BM (19a)

and coupling Eqs. (17b) and (18b) provides the new bou
ary condition for DM:

δ′
L

∣∣
x=L0

= −[
µ2

Lδc/
(
ρ2

LgK2)]1/2 for DM (19b)

To simplify this analysis, the value ofµL is assumed to
be equal toµeff [25] and the following non-dimensional var
ables allow the preceding equations to be transformed in
non-dimensional form:

x∗ = x

L0
, η = δL

L0
, δ∗

0 = δ0

L0
, δ∗

c = δc

L0

Da = K

L2
0

, Ja = Cp�T

Θ

Pr = µeffCp

ka

, Ra = ρ2
LgPr L3

0

µ2
eff

Sw = Pr Rew

Ja
(1+ Ja/2), Rew = ρLvwL0

µeff

u∗ = uL

(gL0)1/2
, v∗ = vL

(gL0)1/2

λ0 = (φ/Da)1/2 (20)

whereΘ = hfg + Cp�T/2. Hereδ0 is the condensate thick
ness at the central point of a plate,Da is the Darcy number
Ja is the Jacob number,Pr is the Prandtl number,Ra is the
Darcy-modified Rayleigh number for a porous medium,Rew

is the Reynolds number for suction along the plate surf
Sw is the suction parameter,u∗ andv∗ are the dimension
less Darcian–Brinkman velocity components in thex- and
y-directions, respectively, andλ0 is called permeability pa
rameter. The permeability parameterλ0 plays a very impor-
tant role in this analysis. In terms of these new variables
new boundary conditions in Eqs. (19a) and (19b) becom
non-dimensional form:(

dη

dx∗

)∣∣∣∣
x∗=1

= 2Pr1/2Ra−1/2λ
−1/2
0 Cosh

(
λ0δ

∗
c

)
× [

Sinh
(
λ0δ

∗
c

) − λ0δ
∗
c Cosh

(
λ0δ

∗
c

)]
× [

Da
{
λ0δ

∗
c Sinh

(
λ0δ

∗
c

)
Sinh

(
3λ0δ

∗
c

)
+ 3Cosh

(
λ0δ

∗
c

)
Sinh

(
λ0δ

∗
c

)
× [

2λ0δ
∗
c − 3Sinh2

(
λ0δ

∗
c

)]}1/2]−1 for BM
(21a(

dη

dx∗

)∣∣∣∣ = −[
Pr δ∗

c /
(
Da2Ra

)]1/2 for DM (21b)

x∗=1
whereδ∗
c is the non-dimensional condensate thickness a

edge of plate, i.e. atx∗ = 1, and is still unknown. By us
ing Eq. (20), the Eqs. (12a) and (12b) with their bound
condition (13) can transform to:

η
d

dx∗

[
η(1− �∗) dη

dx∗

]
=

(
Ja

Da Ra

)
(Swη − 1) for BM

(22a)

η
d

dx∗

[
η

dη

dx∗

]
=

(
Ja

Da Ra

)
(Swη − 1) for DM (22b)

dη

dx∗ = 0 atx∗ = 0 (23)

In Eq. (22a), the symbol�∗ is a function ofx∗ only and is
defined as

�∗ = (1+ Ja/2)Tanh(λ0η)/(λ0η)

+ Ja
[
Sech(λ0η) − 1

]
/(λ0η)2 (24)

From Eq. (20), the non-dimensional velocity of suction c
be also calculated and is given by the following expressi

v∗
w = Sw/

[
(Pr Ra)1/2(1/Ja + 0.5)

]
(25)

Substituting Eqs. (20) and (25) into Eqs. (8a) and (8b) g
the following non-dimensional Darcian–Brinkman veloc
components in thex- andy-directions,

u∗ =
(

Da Ra

Pr1/2

){
Cosh[λ0(η − y∗)]

Cosh(λ0η)
− 1

}
η′ (26)

v∗ =
(

Da Ra

λ0Pr1/2

){
η′′[Sinh(λ0y

∗) − λ0y
∗

+ [
1− Cosh(λ0y

∗)
]
Tanh(λ0η)

]
− 2λ0η

′2Sech2(λ0η)Sinh2(λ0y
∗/2)

}
− Sw

(1/Ja + 0.5)(Pr Ra)1/2
(27)

One of the most interesting physical quantity is the lo
Nusselt number,Nux , which can be defined as

Nux = L0hx/k = 1/η(x∗) (28)

wherehx is the local heat transfer coefficient. The avera
heat transfer coefficient,̄h, can be expressed as:

h̄ =
L0∫
0

(hx/L0)dx = −
L0∫

0

ka

L0�T

(
∂T

∂y

)
w

dx

= ka

L0

1∫
0

1

η(x∗)
dx∗ (29)

In addition, the average Nusselt number,Nu, is given by:

Nu = h̄�T/(ka�T/L0) =
1∫
(1/η)dx∗ (30)
0
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Furthermore, the variation of average Nusselt number,�Nu,
is given by the following relation:

�Nu = [(
Nu − Nu

∣∣
Sw=0

)
/Nu

∣∣
Sw=0

] × 100% (31)

The variation of average non-dimensional film thickne
�δ∗

L, can be defined as

�δ∗
L = [(

δ∗
L − δ∗

L

∣∣
Sw=0

)
/δ∗

L

∣∣
Sw=0

] × 100% (32)

In order to discuss the variation of the flow and heat tran
quantities with suction or without suction, we define E
(31) and (32). In addition, the average non-dimensional
thickness,δ∗

L, in Eq. (32) will be represented as:

δ∗
L =

L0∫
0

(
δL/L2

0

)
dx =

1∫
0

η(x∗)dx∗ (33)

We take the value of suction velocityvw be zero only
where we consider the Darcy flow model. Then, the
lutions of Eq. (22b) are obtained by using the Newto
Raphson scheme (see Appendix A). Eqs. (22a) and (
with the boundary conditions (21a), (21b) and (23), resp
tively, are solved numerically using the fourth-order Rung
Kutta scheme and shooting method [26,27] to obtain
non-dimensional condensate profiles. Eqs. (22a) and (
are rewritten as the following three, first-order ordinary d
ferential equations,

ζ ′
1 = ζ2 = η′ for DM and BM (34)

ζ ′
2 = η′′ = 2Jaλ2

0(ζ1Sw − 1)

× [
Da Ra

{
2Ja

[
Sech(ζ1λ0) − 1

]
− ζ1λ0

[
2ζ1λ0 − (2+ Ja)Tanh(ζ1λ0)

]}]−1

+ ζ 2
2

{
2Ja

[
Sech(ζ1λ0) − 1

] + ζ1λ0Sech(ζ1λ0)

× [
ζ1λ0Sech(ζ1λ0)

(
Cosh(2ζ1λ0) − 1− Ja

)
+ 2Ja Tanh(ζ1λ0)

]}
× [

ζ1
{
2Ja

[
Sech(ζ1λ0) − 1

]
− ζ1λ0

[
2ζ1λ0 − (2+ Ja)Tanh(ζ1λ0)

]}]−1

for BM (35a)

ζ ′
2 = η′′ = Ja(ζ1Sw − 1)

Da Ra ζ 2
1

− ζ 2
2

ζ1
for DM (35b)

subject toζ2(0) = 0, where we have definedζ1 = η and
ζ2 = η′. In the first integration of Eq. (34) we have to gue
)

the unknown initial value, say, 0< η(0) = δ∗
0 � 1. The

uniform step size of�x∗ = 1.0 × 10−5 is chosen and th
computation converge is|ERR| � 10−13, where ERR is the
corresponding value of the absolute error in the bound
conditions between Eqs. (35) and (36) atx∗ = 1. At x∗ = 1,
we have to check if the remaining boundary conditions
satisfied:

ζ2(1) = 2Pr1/2Cosh(λ0ζ1)
[
Sinh(λζ1) − λζ1Cosh(λζ1)

]
× [

Da
{
Raλ0

{
λ0ζ1Sinh(λ0ζ1)

[
6λ0ζ1Cosh(λ0ζ1)

+ Sinh(3λ0ζ1)
]

− 9Cosh(λ0ζ1)Sinh3(λ0ζ1)
}}1/2]−1

for BM (36a)

ζ2(1) = −[
Prζ1(1)/

(
Da2Ra

)]1/2 for DM (36b)

Eqs. (36a) and (36b) have to be satisfied with desired a
racy|ERR| � 10−13, i.e.,|ζ(1)from Eq. (35)−ζ(1)from Eq. (36)|
� 10−13.

3. Results and discussion

Based on the numerical results obtained, it may
noted that how theδ∗

0 solutions using the Newton–Raphs
scheme fits into theδ∗

0 solutions obtained using the Rung
Kutta scheme forJa = 0.15, Ra = 104, and Sw = 0, as
presented Table 1. It can be estimated that the relatively m
imum error is lower than 0.02% between the values ofNu by
the Newton–Raphson scheme and the Runge–Kutta sch
respectively.

In the present work, Fig. 2 shows the variation of the
mensionless thickness,η, of condensate along the surface
a horizontal flat plate. It is seen that at fixed values ofDa, Ja,
Ra, andSw, the value ofη(x∗ = 0) decreases asPr number
increases. In addition, the smaller value ofη(x∗ = 0) indi-
cates that the relative condensate film central thicknessδ0,
to the plate length,L0, is very thin. Furthermore, we notic
that with the increase ofDa number (i.e., the higher pe
meability of a porous medium), the film profiles are nea
a straight line. Especially, the fact is mostly remarkable
liquid metal materials condensed in a porous medium.
also clear that, if thePr number increases, the variation
film thickness strictly increases. This is mainly due to
l

Table 1
Comparisons of solutions by Newton–Raphson scheme and solutions by Runge–Kutta scheme forJa = 0.15,Ra = 104, andSw = 0 by using the Darcy mode

Ja = 0.15,Ra = 104 Solutions by Newton–Raphson scheme Solutions by Runge–Kutta scheme

δ∗
0 δ∗

c Nu δ∗
0 δ∗

c Nu

Da = 0.01,Pr = 7 0.121635 0.033546 10.83748 0.121635 0.033498 10.83966
Da = 0.1, Pr = 7 0.066396 0.045055 16.86843 0.066396 0.045049 16.86914
Da = 0.01,Pr = 100 0.119525 0.014653 11.82492 0.119524 0.014539 11.83199
Da = 0.1, Pr = 100 0.057736 0.022042 21.81584 0.057736 0.022027 21.81868
Da = 0.01 Pr = 0.02 0.180946 0.155755 5.795467 0.180946 0.155750 5.795547
Da = 0.1, Pr = 0.02 0.164328 0.161519 6.120126 0.164330 0.161520 6.120209
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Fig. 2. Variation of the non-dimensional thicknessη with dimensionless positionx∗ at different values ofDa andPr for Ja = 0.15, Ra = 104 andSw = 0 by
using DM.
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Fig. 3. Variation of the non-dimensional film profiles at different values
suction parameterSw for Da = 0.01, Ja = 0.1, Pr = 7, Ra = 2 × 105 and
λ0 = 8 based on Brinkman model (BM).

presence of relatively viscous condensation fluid motion
decreases along the plate surface.

It is apparent from Fig. 3 that the larger value of su
tion parameterSw, the lower value of central dimensionle
film thicknessη(x∗ = 0) is obtained for fixed values ofDa,
Ja, Pr, Ra, andλ0. Based on Brinkman model (BM), th
variation of value of localη along horizontal plate is smal
Otherwise, it reveals that the viscous effect in the cond
sate boundary layer gets the thicker film thickness at edg
plate and the lower variation of local slope, i.e.η′(x∗).

The physical significance of the average Nusselt num
given by Eq. (30) is a measure of the average rate of
convection in comparison with the average rate of heat c
duction across the fluid layer. A larger value ofNu implies
enhanced heat transfer rate by convection and the higher
transfer rates lead to higher condensation rates allowing
use of smaller condensers. Fig. 4 illustrates the Prandtl n
t

Fig. 4. Variation ofNu with Da at different values ofPr for Ja = 0.15,
Ra = 1× 105, λ0 = 8 andSw = 0.

ber effect on the average heat transfer rate,Nu, vs. Darcy
number,Da, atJa = 0.15,Ra = 1×105, λ0 = 8 andSw = 0,
i.e. without suction. It is found that the value ofNu in-
creases with the increase ofDa and Pr. It is obvious that
the lowerDa value would bring little variation ofNu for var-
ious Pr � 3, since the condensate in a lower permeab
porous cannot penetrate through the porous medium rap
Besides, under fixed values ofJa, Pr, Ra, Sw and λ0, the
value ofNu increases very slowly asDa is larger than 0.05
when we use Brinkman model to predict it. But the pred
tion of Nu by Darcy model is not satisfactory for the ca
of the liquid of higherPr number (i.e.Pr � 100). Thus, it
can be seen that the non-slip condition plays an impor
role. The higher value ofλ0 leads to values ofNu which
are very close using both BM and DM models as sho
in Fig. 5. This is due to the higher porosity that occurs
the shear force of condensate relatively decreasing. Fo
uid metal(Pr = 0.0249), the variation ofNu is very smaller
whenDa � 0.04 than it isDa < 0.04, i.e. theNu is almost
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Fig. 5. Variation of the average Nusselt number,Nu, with Darcy num-
ber, Da, at different values ofλ0 andSw for Ja = 0.1, Pr = 0.0249, and
Ra = 2× 106.

Fig. 6. Variation of the average condensate thickness,δ∗
L

, with Jacob num-

ber,Ja, at different values ofSw andRa for Da = 5× 10−2, andPr = 7.

a constant asDa � 0.04. It is due to the heat conductio
mechanism plays the leading role in condensation; the
mentum diffusion is much lower than the energy diffusio
Nevertheless, the effect of permeability of a porous med
is negligible for liquid metals whenDa � 5× 10−3.

Fig. 6 shows, for fixedDa = 5 × 10−2 andPr = 7, the
value of δ∗

L with Jacob number at different values ofSw

andRa. It demonstrates that the higher Jacob number le
to the higher average thickness of condensate liquid
porous medium and decreases the variation ofδ∗

L between
Brinkman and Darcy models asJa � 0.22. To illustrate the
effects of the no-slip condition onNu, versusJa, Fig. 7 is
plotted. It can be seen that the value ofNu decreases asJa
increases. The higher value ofJa implies the higher value
of �T leads to the increasing average condensate thick
(see Fig. 6) and the decreasing heat transfer rate. The
lines in Fig. 7 are the solutions based on DM and BM mod
without suction effect whenDa = 5 × 10−2 andPr = 7. It
is worth noting that the value ofNu by BM whenJa = 0.25
s

Fig. 7. Variation of the average Nusselt number,Nu, with Jacob number,Ja,
at different values ofSw andRa for Da = 5× 10−2, andPr = 7.

Fig. 8. Variation ofNu with Ra at different values ofSw for Da = 1×10−2,
Ja = 0.1, Pr = 7 andλ0 = 8.

andRa = 105 gives the very closed value ofNu by DM when
Ja = 0.25 andRa = 104.

The value ofNu increases with the increase ofRa at fixed
values ofDa, Ja, Pr, Sw andλ0 as shown in Fig. 8. It demon
strates that the higher condensation heat transfer ra
mainly due to the higher convection heat transfer of cond
sate in a porous medium. From Table 2, it can be seen
Nu obtained by using Darcy model is 2.03–3.14 times theNu
number by the Brinkman model asRa = 5 × 104–1× 106

and Sw = 0. Accordingly, the viscous boundary effects
the Brinkman model largely reduce the heat transfer rat
the modified Rayleigh numberRa increases.

The variation of average Nusselt number,�Nu, Eq. (31),
and variation percent of average dimensionless film th
ness,�δ∗

L, Eq. (33), are plotted in Figs. 9 and 10 for va
ous three values of the suction parameter,Sw, respectively.
These figures display the comparison of those relations
dicted by using both Darcy and Brinkman models. Un
fixed values of,Ja, Pr, Sw and λ0, the value of�Nu de-
creases as values ofRa and the absolute value of�δ∗

L in-
creases. It is seen from Fig. 10 and Table 2 that the hi
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Fig. 9. Variation of�δ∗
L

with the modified Rayleigh number,Ra, at different

values ofSw for Da = 1× 10−2, Ja = 0.1, andPr = 7.

Fig. 10. Variation of �Nu with Ra at different values ofSw for
Da = 1× 10−2, Ja = 0.1, Pr = 7 andλ0 = 8.

Table 2
Values ofNu asDa = 10−2, Ja = 0.1, Pr = 7.0, for the selected the suctio
parameter values ofSw by using the Brinkman and Darcy models

Nu Da = 10−2, Ja = 0.1, Pr = 7.0

BM BM DM DM
λ0 = 5,
Sw = 0.0

λ0 = 5,
Sw = 0.8

Sw = 0.0 Sw = 0.8

Ra = 5× 104 9.918574 10.08297 20.13965 20.44730
Ra = 1× 105 11.00209 11.16402 24.59112 24.89735
Ra = 3× 105 12.74893 12.90843 33.45156 33.75651
Ra = 5× 105 13.57277 13.73162 38.44399 43.01929
Ra = 8× 105 14.34011 14.49855 43.59059 43.89543
Ra = 1× 106 14.70849 14.86679 46.23267 46.53762

suction effect (Sw > 0) rapidly increases the convection he
transfer rate asRa � 105. As Ra is lower than 104, then the
value of�Nu for Darcy model is larger than for Brinkma
model and the absolute value of�δ∗

L as well. It is due to the
predicted value of film thickness by using Darcy mode
thinner than by using Brinkman model.
Fig. 11. Variation of the average Nusselt number,Nu, with Prandtl number,
Pr, at different values ofRa for Ja = 5 × 10−2, Da = 1 × 10−2, Sw = 0
andλ0 = 6.

Fig. 12. Variation of the average Nusselt number,Nu, with permeability
numberλ0 at different values ofSw andPr for Da = 1 × 10−2, Ja = 0.1,
andRa = 5× 105 by using BM only.

Fig. 11 represents the variation ofNu with Pr for fixed
Da = 1 × 10−2, Ja = 5 × 10−2, Sw = 0 andλ0 = 6 at dif-
ferent values ofRa. It demonstrates that the value ofNu in-
creases asPr increases. The value of the permeability pa
meterλ0 depends upon the variation of the porosity and p
meability of a porous medium. In order to show the variat
of λ0 on the condensation characteristics, Fig. 12 disp
the effect ofPr on the dimensionless average heat tra
fer rateNu vs. permeability parameter,λ0, at Da = 0.01,
Ja = 0.1, andRa = 5 × 105. It can be seen thatNu strictly
increases with the increase of the value ofλ0 at fixed values
of Da, Ja, Pr andRa. This can be interpreted that the high
condensation heat transfer rate is mainly due to the hi
porosity of the porous medium. This result can be also
plained from the fact that the presence of the higher poro
makes much more space forx-directional flow. This implies
that the porosity plays a very important role for condensa
heat transfer rate in a porous medium. Accordingly, if
have a larger area plate with suction effect, and with a po
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Fig. 13. Variation of the average dimensionless film thickness,δ∗
L

, with
Prandtl number,Pr, at different values ofRa for Ja = 0.05, Da = 0.01,
Sw = 0 andλ0 = 6.

medium which is higher permeability and porosity, then t
can be an effective method to increase condensation
transfer rate. It is apparent from Fig. 13, which the lower v
ues of the Prandtl number, the greater values ofδ∗

L are pro-
cured for a fixed value ofRa. It can be demonstrated thatPr
represents the relative importance of momentum and en
transport by the diffusion process in a porous medium.
physical significance of the higher Prandtl number, for o
Pr � 1, is associated with the larger momentum transp
by the diffusion process and is due to the thinner conde
tion film thickness. Besides, let us consider the case w
Pr � 1, found in liquid metals, which have high therm
conductivity but low viscosity, so that the energy diffusion
much greater than the momentum diffusion. Conseque
as the Prandtl numbers are lower than unity, it is found
the variation of average Nusselt number depends strong
the values ofRa using the Darcy model.

4. Conclusions

The two-dimensional finite-size horizontal plate cove
with a thick porous medium layer is solved numerically
using the fourth-order Runge–Kutta scheme and shoo
method. The accuracy of the absolute error 10−13 is used
to get solutions. The non-dimensional central thicknes
the plate decreases as the values ofDa, Pr andλ0 increase.
The absolute value of|�Nu| is small for the smaller valu
of Sw (i.e. Sw � 0.8) but it is larger for the smallerRa (i.e.
Ra � 105). With fixed the values ofJa, Pr, Ra, andSw, the
influence ofλ0 is more significant than the influence ofDa
for condensation heat transfer rate asDa � 5 × 10−2. It is
shown that the viscous effect plays an important role for
convection heat transfer in a porous medium as the pe
ability of a porous medium is very high, so that the Brinkm
model is valid for this case. But the values ofNu using Darcy
model is very close compared with the values ofNu using
Brinkman model whenJa is larger. In addition, it rapidly re
t

-

duces the value ofNu for oils, Pr � 1, as the higherDa and
Ra, and the lowerJa are specified.
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Appendix A

η
d

dx∗

[
η

dη

dx∗

]
= − Ja

Da Ra
(A.1)

If we sett = η2, γ = 2ηη′ = dt/dx∗ and d/dx∗ = γ · d/dt ,
Eq. (A.1) becomes

γ · dγ = −2Ja/(Da Ra) · dt/t1/2 (A.2)

This is easily done by integrating each side of the ab
Eq. (A.2), then by using its boundary condition, yielding

γ = −2
(
δ∗

0 − t1/2)1/2[2Ja/(Da Ra)
]1/2 = 2η · dη/dx∗

or

dη/dx∗ = −(
δ∗

0 − η
)1/2[2Ja/(Da Ra)

]1/2
/η (A.3)

and the value of dη/dx∗ at x∗ = 1 can be obtained from
Eq. (A.3)

dη/dx∗ = −[
2Ja

(
δ∗

0 − δ∗
c

)
/(Da Ra)

]1/2
/δ∗

c (A.4)

Hence, rearranging Eq. (A.3) and integrating each sid
Eq. (A.3) with its boundary condition, we have[
2Ja/(Da Ra)

]1/2
x∗

= δ
∗3/2
0

(
1− η/δ∗

0

)1/2[4/3+ 2η/
(
3δ∗

0

)]
and thus(
1− η/δ∗

0

)(
2+ η/δ∗

0

)2 = [
9Ja/

(
2Da Ra δ∗3

0

)]
x∗2 (A.5)

If we let x∗ = 1 andη = δ∗
c , then rewrite Eq. (A.4), and w

get

δ∗
0 = {

9Ja/
[
2Da Ra

(
1− δ∗

c /δ∗
0

)(
2+ δ∗

c /δ∗
0

)2]}1/3 (A.6)

From the Eqs. (21b) and (A.4), we have[
Pr δ∗

c /
(
Da2Ra

)]1/2 = [
2Ja

(
δ∗

0 − δ∗
c

)
/(Da Ra)

]1/2
/δ∗

c

and try to rearrange the above equation as

δ∗
0 = {

2Da Ja
(
1− δ∗

c /δ∗
0

)
/
[
Pr

(
δ∗
c /δ∗

0

)3]}1/2 (A.7)

Substituting Eq. (A.6) into Eq. (A.7), we finally obtain(
1− δ∗

c /δ∗
0

)5(2+ δ∗
c /δ∗

0

)4

− 81Pr3(δ∗
c /δ∗

0

)9
/
(
32Da5Ja Ra2) = 0 (A.8)

The value ofδ∗
c /δ∗

0 from Eq. (A.8) is obtained by usin
the Newton–Raphson scheme, then the value ofδ∗ from
0
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Eq. (A.7) is easily done. In this case, the values ofNu and
δ∗
L could be developed as in the following equations

Nu =
1∫

0

1

η(x∗)
dx∗ = −

δ∗
c∫

δ∗
0

(0.5Da Ra/Ja)1/2

(δ∗
0 − η)1/2

dη

=
[

2δ∗
0Da Ra

Ja

(
1− δ∗

c /δ∗
0

)]1/2

(A.9)

δ∗
L =

1∫
0

η(x∗)dx∗ = −
δ∗
c∫

δ∗
0

(0.5Da Ra/Ja)1/2η2

(δ∗
0 − η)1/2

dη

= δ
∗5/2
0 {0.5[1− (δ∗

c /δ∗
0)]Da Ra/Ja}1/2

15

× [
6
(
δ∗
c /δ∗

0

)2 + 8
(
δ∗
c /δ∗

0

) + 16
]

(A.10)
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